If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t+4.9t^2=3.27
We move all terms to the left:
8t+4.9t^2-(3.27)=0
We add all the numbers together, and all the variables
4.9t^2+8t-3.27=0
a = 4.9; b = 8; c = -3.27;
Δ = b2-4ac
Δ = 82-4·4.9·(-3.27)
Δ = 128.092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-\sqrt{128.092}}{2*4.9}=\frac{-8-\sqrt{128.092}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+\sqrt{128.092}}{2*4.9}=\frac{-8+\sqrt{128.092}}{9.8} $
| 6k+12=30-3k | | 22=2+2+3x+3x+3x | | P=2+2+3x+3x+3x | | √(4x-8)=6/ | | f-7=5 | | 22.5=x-7.5 | | f+10=21 | | (2*x^2)-(42*x)+160=0 | | 14x+2=360 | | (2*x²)-(42*x)+160=0 | | g=104 | | 4(m-2)-(m+3)=-1 | | (17-5x)^2=0 | | 2*x²-42*x+160=0 | | x-3÷2=11 | | 2x²-42x+160=0 | | 2*x²-(42*x)+160=0 | | 2x-6+x=30 | | -3(x-1)=5-2x | | -x+4=x-4 | | 3x-4=-20+8x | | 5(2k-3)=2(k-2)+5 | | 6x-15=7x+11 | | A=22/7x8 | | 4x+3x=159 | | 7=9–3c | | -4x+10=98 | | 4-j=0 | | 2x^2-42x+160=0 | | x²-11x-4=2x-18 | | B=-(2x+3)-2x | | x^2-42x+160=0 |